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Introduction
● One-class novelty detection

○ Quantifying the probability that a test example belongs to the distribution defined by training 
examples

○ Only a single class are observed at training time
○ The trained model is expected to accept in-class examples and reject out-of-class examples

● Applications
○ Abnormality detection
○ Intruder detection
○ Bio-medical data processing
○ Imbalance learning
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Introduction
● Contemporary works in one-class novelty detection

○ Focus on learning a representative latent space for the given class
■ Novelty detection is performed based on the learned latent space

○ The difference between the query image and its inverse image (reconstruction) is used as a 
novelty detector

● The existing work assumed that when an out-of-class object is presented to 
the network

○ It will do a poor job of describing the object
○ Thereby reporting a relatively higher reconstruction error
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Introduction
● However, this assumption does not hold at all times

○ For an example the auto-encoders trained on digits with complex shapes, such as digit 8, 
have relatively weaker novelty detection accuracy

○ Because a latent space learned for a class with complex shapes inherently learns to 
represent some of out-of-class objects as well
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Introduction
● The requirement in novelty detection

○ In-class samples are well represented
○ Out-of-class samples are poorly represented
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Introduction
● In this work, propose One-Class GAN(OCGAN)

○ A two-fold latent space learning process that considers both these requirements
○ Learn a latent space that represents objects of a given class well

■ Ensure that any example generated from the learned latent space is indeed from the 
known class
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Method - Motivation
● If the entire latent space is constrained to represent images of the given class, 

the representation of out-of-class samples will be minimal 
○ Thereby producing high reconstruction errors for them

● Explicitly force the entirety of the latent space to represent only the 
given class
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Method - Proposed strategy
● OCGAN  consists of four components

○ Denoising auto-encoder
○ Two discriminators

■ Latent discriminator
■ Visual discriminator

○ Classifier
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Method - Proposed strategy
● Denoising auto-encoder

○ Objective
■ Minimizing the distance between the input and the output of the network

○ Noise is added to the input image
■ The network is expected to reconstruct the denoised version of the image

○ Densely sampling from the latent space
■ Having a bounded support for the latent space

● A tanh activation in the output layer of the encoder
● Support of the latent space is 
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Method - Proposed strategy
● Latent Discriminator

○ The motivation
■ Obtain a latent space where each and every instance from the latent space represents 

an image from the given class
○ Force latent representations of in-class examples to be distributed uniformly across the 

latent space
○ Trained to differentiate between latent representations of real images of the given class and 

samples drawn from a                      distribution
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Method - Proposed strategy
● Visual Discriminator

○ In order for the network not to represent any out-of-class objects
■ Force all images generated from latent samples are from the same image space 

distribution as the given class
○ Trained to differentiate between images of the given class and images generated from 

random latent samples using the decoder  
○ Fake images chosen at random in general will look similar to examples from the given class

15



Method - Proposed strategy
● Informative-negative Mining

○ The components described thus far account for the core of the proposed network
■ There are few cases where the produced output looks different from the given class

○ Despite the proposed training procedure, there are latent space regions that do not produce 
images of the given class

■ Because sampling from all regions in the latent space is impossible during training
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Method - Proposed strategy
● Informative-negative Mining

○ Propose to actively seek regions in the latent space that prodice images of poor quality
■ Learns to produce good quality in-class images even for these latent samples

○ To find informative-negative samples, 
■ Start with random latent-space samples
■ Use a classifier to assess the quality of the image generated from the sample
■ Back-propagate and compute gradients in the latent space 
■ Take a small step in the direction of the gradient to move to a new point in the latent 

space where the classifier is confident that the generated image is out-of-class
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Method - Proposed strategy
● Classifier

○ Determine how well the given image resembles content of the given class
○ Train a weaker classifier instead

■ Reconstructions of in-class samples as positives 
■ Generated from random samples in the latent space, as negatives
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Method - Proposed strategy
● Full OCGAN Model
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Experiments
● Evaluation Methodology

○ Area Under the Curve(AUC)
○ Receiver Operating Characteristics (ROC) curve

● Protocol 1
○ Training is carried out using 80% of in-class samples. The remaining 20% of in-class data is 

used for testing. Negative test samples are randomly selected so that they constitute half of 
the test set.

● Protocal 2 
○ Use the training-testing splits of the given dataset to conduct training. Training split of the 

known class is used for training / validation. Testing data of all classes are used for testing.
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Experiments
● Datasets
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Experiments
● Protocol 1
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Experiments
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Experiments
● CIFAR10 with Protocol 2
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Conclusions
● In this work, we showed a network trained on a single class is capable of 

representing some out-of-class examples
● A latent-space-sampling-based network learning procedure

○ Restricted the latent space to be bounded and forced latent projections of in-class population 
to be distributed evenly in the latent space using a latent discriminator

○ Sampled from the latent space and ensured using a visual discriminator that any random 
latent sample generates an image from the same class

○ Attempt to reduce false positives we introduced an informative-negative mining procedure. 

28



Outline
● Introduction
● Method

○ Motivation
○ Proposed Strategy

● Experiments
● Conclusions
● Progress Report

29



Progress Report
● The drawback of OCGAN

○ If we have many class in our normal data? How to reconstruct the latent space?

● Instead of forcing the decoder to reconstruct the entire latent space to normal 
data

○ We force the normal data to form a gaussian distribution tightly
○ Then the abnormal data will naturally be outside the distribution
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DONAS
● Comparison experiment

○ Compare with SOTA
○ Transfer to CIFAR10
○ Object Detection

● Ablation study
○ Novel architecture of supernet(Multiple kernel + One shot)

■ Training supernet w/wo specific order
■ Training supernet w/wo SBN
■ Compare the parameter of our supernet and previous supernet

○ Generator searching
■ The generate curve with supernet evaluation
■ Compare with random search (accuracy, time)
■ Compare with evolution algorithm(accuracy, time)
■ Generator w/wo the backbone
■ Generator with different hardware constraint objective
■ Different hardware constraint weight of the loss function
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DONAS
● The effective of our method
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DONAS
● Training supernet w/wo specific order (w SBN)
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DONAS
● Training supernet w/wo SBN
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DONAS
● The generate curve with supernet evaluation
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